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A general method is developed for constructing equations of the Schwarz-Christoffel type. 
These equations define conformal transformations between regions of the complex plane, each 
of whose boundaries may consist of straight or continuously curved line segments and corners. 
The more familiar types of Schwarz-Christoffel equations are rederived, and some new types 
are obtained. (0 1987 Academc Press. Inc 

I. INTRODUCTION 

Let z =z(w) denote a one-to-one conformal map from region R, of the 
“computational” plane, w = u + iv, to region R, of the “physical” plane, z =x i iy. 
This is relevant to mesh-generation for study of flows in regions RZ of irregular 
boundary and to potential flow problems which may be simplified by reference to 
some standard region R, with a more regular boundary. 

The Schwarz-Christoffel equation (SCE), as customarily developed in textsi”, 
expresses dz/dw as a function of w then R, is a polygon and R, is a half-plane or 
disc. Davis [3] used a continuous limit of the polygon case to compute mappings 
when R, is bounded by a more general curve. The SCE has also been adapted by 
Sridhar and Davis [4] to certain classes of channels. Floryan [S, 6] has ~~~Ii~d 
SCEs to mesh calculations for regions bounded by walls, or within charnels, 
including periodic and nonperiodic geometries. 

The purposes of this paper are (a) to show how these SCE examples are special 
cases of a single formula of considerable generality and (b) to obtain additional 
examples and some improvement of existing ones for later applications to mesh 
generation and potential flow problems. 

In terms of a suitably defined two-source Green’s function on R,, one can 
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express an analytic function S(w) in terms of the tangential derivative of its 
imaginary part along the boundary of R,. If one sets S(w) = z(w) or z(w) - w, the 
result is an integral equation with logarithmic kernel determining z(w) when the 
boundary of R, is known. Menikoff and Zemach [7] applied this formulation in a 
study of two-dimensional Rayleigh-Taylor instability. 

Here, we set S(w) = log dz(w)/dw to obtain the generalized Schwarz-Christoffel 
equation. In this general equation, R, may also have corners and curved boundary 
sections; in fact, the regions R,, R,, and their respective boundaries enter sym- 
metrically. The class of geometries for which an SCE can be written explicitly 
corresponds to the class of R, for which the requisite Green’s function is obtainable 
in closed analytic form. The polygon formulas emerge as special cases of the 
formulas for general regions, rather than the other way around as in the Davis 
approach. 

The derivation is given in the next section. Section III discusses some questions of 
implementation and particular cases. Section IV is a listing of SCEs for various R,‘s 
for reference purposes. Alternative approaches to numerical conformal mapping are 
enumerated in Henrici’s book [S]. 

II. FORMULATION 

A. Boundaries 

The boundary B, of R,,, may be composed of one or more rectifiable Jordan cur- 
ves BE), either closed and of finite length, or open and of infinite length. Let s, label 
arc-length on each curve, measured from a suitable chosen reference point, with the 
direction of increasing s, such that the neighboring part of R, lies to the left (the 
“left-hand rule”). We suppose the boundary curves have a continuously turning 
tangent, except at a finite number of corners. Let O,(s,) be the tangent’s direction 
angle, oriented in direction of increasing s,. We also suppose d$,/ds, depends con- 
tinuously on s,, except at corners. A corner at s; will have a turning angle dB,(s~): 

de,(s;) = e,(s:, + E) - &(s:, -E). 

Here and after, E represents a positive infinitesimal going to zero. For each such 
corner, we may regard dO,/ds, as having a Dirac d-function contribution of 
HI,(&) qs, -Sk). 

For the R, boundary, we adopt the same assumptions and similar notations: B,, 
s,, f3,, df?,. We use O,[s,] and O,(s,) to indicate, respectively, dependence of 8, on 
a point of B,, and, through the mapping, on a point of B,. If z(&) is a corner of 
B,, then dO,/ds, will include the term de,(&) 6(s, -sl). 

B. The Log-Derivative Function S(w) 

Set log(dz( w)/dw) = S(w) = S,(w) + iS,( w). Then by our assumptions, S(w) is 
analytic in R, and has both tangential and normal derivatives on the boundary, 
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except at corners. The left-hand rule and the Cauchy-Riemann conditions applies 
at a smooth boundary point imply 

as, as, as, as, -=-) -= -----> an as, an as, 

with a/an along the outward normal. 
For dz and dw along their respective boundaries, 

log(dz) = log 1 ds, 1 + ie,, log(dw) = log 1 ds, I+ ie,,,, 

so that, with wB denoting a point of B,, 

S,(w,) = Re(S(w,)) = log 2 = log(ds,/ds,), 
I I 

SAW,) = WS(w,)) = 0, -e,, 

and ds,/ds, is always positive. 

C. Green’s Functions 

(2.2a) 

(223) 

For each component B$ of B,, let Ii be its length (which may or may not 
infinite) and let 8, be an associated real constant. For the purposes of this analysis, 
we define the Green’s function for R, as a real function G(w, w’) satisfying 

Vf,G(w, w’) = 271 S(U - u’) 6(v - v’) (2.3) 

in R(w), and satisfying 

for boundary points wB on Bz). Integrating (2.3) over R, and applying Green’s 
theorem, we get 

: jB,zl $ G(w,, w’) ds,(ws) = h. 

w 

Therefore, by (2.4), 

showing that the /3, cannot all be chosen independently. Given a set of ,8; consistent 
with (2.5), one may show that a Green’s function G(w, w’) obeying the symmetry 

G(w, w’) = G(w’, w) (2.6) 
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exists, and is uniquely determined up to an additive constant. Hereafter, we assume 
G(w, w’) is symmetric. 

Now set 

g(w, w', wo) = G(w, w') - G(w, wo). (2.7) 

This is a “two-source” Green’s function, obeying 

v2, g(w, w’, WC)) = 27r d(z.4 - u’) 6(v - 0’) - 2716(u - 240) 6(v - 210) (2.8) 

and, for w = wB on any B&j, 

f g(w, w’, w(j) = 0. 

D. The Generalized Schwarz-Christoffel Equation 

Multiply V’S,(w) = 0 by g( w, w’, w,); multiply (2.8) by S,(w); subtract and 
integrate over R,. Applying Green’s theorem, (2.6), and (2.9), we can put the result 
in the form 

= S,(w) = S,(wo) -& .r,, CG(w, wi) - G(w,, &)I 

x 2 (w;) ds,(w;). (2.10) 

If R, has boundaries extending to co, interpretation of (2.10) requires consideration 
of the asymptotic behavior of G, S,, dG@, and dS,/an; see the discussion in 
Section III. 

In view of (2.1) and (2.2b), we put 

as,hd 

an 
ds,(ws) = 

asI 
- &v(ws) = dS,(w,) as 

w 

= dO,(s,) - dO,(s,). 

We have already recognized that 8, and 0, are continuously differentiable functions 
on B, except that 0,&s,) has jumps at the corners of R,, and e,(s,) has jumps 
where the s, are images, via the conformal map, of the corners of R,. 

Let r(w,wL) be a complex extension of G(w, wig). That is, r is an analytic 
function of w in R, whose real part is G(w, wk). In Section IV, Green’s functions 
are given explicit representations in terms of logarithms of absolute values of 
analytic functions of w. Then the complex extensions may be obtained simply by 
dropping the absolute value signs. If the G’s are replaced by Ps in (2.10), the left 
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side of (2.10) is an analytic function whose real part is S,. Its imaginary part can 
only differ from S, by a constant. Hence, 

x [de,(&) - dO,(&)-J. (2.11) 

Here, w0 is an arbitrary point in R, and C, is a complex constant, independent of 
w. Setting w = w0 in (2.11), we see that Co = log dz/dw, evaluated at wO. 

We call Eq. (2.11) the generalized Schwarz-Christoffel equation with subtraction. 
Subtraction refers to the differencing of T(w, wig) and lJwO, wig). This goes 
the use of g(w, w’, wO) rather than G(w, w’) in Green’s theorem and serves two 
related purposes. First, the use of (2.9) rather than (2.4) simplifies the analysis. 
Second, when R, extends to co, g(w, w’, wO) decreases faster as 1 w / -+ co than 
G(w, w’), providing the extra margin of convergence of the integrals at / w j -+ co 
which is sometimes needed. 

By specializing to w on B, and taking the real part of (2.11), we have 

log = WC,) -$ jB, CG(ws, 6) - G(w,, 441 

which provides the 
given 

Simpler forms of 

x CdezCsz(&)l - d@,MvIl (2.12) 

determining relation for s,(s,) and @,(s,) when RZ and 

(2.11) and (2.12) may be valid. If the integrals 

r 
j r(w, wls)Cde, -de,], (2.13) 

are separately convergent, then the second one may be lumped with Co, giving, in 
terms of a new constant C, the unsubtracted form of the generahzed 
Schwarz-Christoffel equation: 

lo&C-~-&, w, wiJCdfl,(s’,) - d~w(s:)l. (2.n4g 

Note also that the portion 

depends on R,, but not on R, ; it can be evaluated prior to computation of the con- 
formal map. For some R,, including all those listed in Secton IV, its value is zero. 
But it may not vanish if, e.g., R, has corners. 
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As a first illustration, let R, be the upper half plane. Then & = u’, de, = 0, 
T(w, u’) = 2 log(w - u’), and (2.14) reduces to 

de,( u’) du’ 
log(w-U’)7-. 

71 
(2.15) 

In addition, suppose that R, is a polygon with corners at (zi}, which are images by 
the map of points {ZQ} on the real axis of the w-plane. Then, 

9 = 1 &,(uJ 6(u - UJ. 
1 

Also, the integrals (2.13) are indeed separately convergent because they are restric- 
ted to a finite interval, justifying the use of the unsubtracted SCE. Corresponding to 
the turning angles, d/3,(u,) are the parameters a, = -d0,(u,)/rr. Equation (2.15) 
reduces to 

dz 
dw = ec n (w - u,)~I 

I 

and so, the original equation of Schwarz and Christoffel is recovered in its primitive 
form. 

III. COMMENT AND EXAMPLES 

A. Infinite Regions 

The handling of regions R, and R, which have boundaries extending to infinity 
may be indicated by several examples. 

First, suppose R, is a semi-infinite region whose boundary extends to infinity at 
both ends and R, is the upper half plane. Consider a restricted region RI, which is a 
half-disc of radius p in the upper half plane with diameter on the u axis from -p to 
p. We think of p as large and tending to 03. Let R, be similarly restricted to R: by 
some such “arc at co.” Then the mapping of RI, to RI, has no difficulties at co. In a 
fully rigorous treatment, we might inquire how Green’s function for the half-disc 
behaves as p -+ co, but for present purposes, we shall suppose it is adequately 
represented by G(w, w’) for R,, given in Section IV.B.l. Then G behaves like 
log 1 w 1 for large I w 1, and (2.10) suggests, but does not assure, that S, = 
log 1 dz/dw I also behaves like log I w I. Assume, to be slightly more conservative, that 
S, behaves no worse than I w 1 I-’ and aS,/dn behaves no worse than I w I +. (See 
Section 1II.D for an example where S, behaves like (log I w I )‘). Also, g(w, w’, w,,) 
behaves like I w I -i and dg/dn like I WI -‘. Then the “terms at co” in Green’s 
theorem, involving 

s & adan 4, s gas,/an ds, 
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on the circumference of the half-disc decrease like pee or faster as p + cc a 
disappear in this limit. Next, assume the “arc at 00” of Ri is to be mapped int 
circumference of the half disc; the contribution of 

to (2.10) vanishes as p-l. This establishes the SCE for R, and R,. subject to the 
assumed limit on the behavior of SR at co. 

Second, suppose R, is the upper half plane and R, is the interior of the unit disc 
about the origin, with T(w, e’@) the extended Green’s function for R, and qY 
denoting the polar angle. Let R: be the rectangle with corners at (L, 0), (L, U,), 
( -L, iL), and ( -L, 0). Let these points be mapped into points on the unit 
with polar angles dl, q&, &, d4. As L -+ co, the interval (dl < q5 d q4J compresses to 
a single point 4, such that w -+ ezBm as 1 z / --f co, and 

where A(m) is the complete turning angle of B, (in this case, d( cc ) = 27~) as the 
tangent vector on B, at x -+ + co turns around to align with the tangent vector at 
x -+ -co. Thus in treating the complete integral 

s * T(w, ei4’) dB(qY), 
$‘= --n 

8, is counted as having a jump of A( co) associated with the point at co of RI, in 
addition to any other variation due to deviation of B, from a straight line. 

Third, suppose R, has channels to cc bounded by straight lines with aperture 
angles of A( co) and A( --co) and this is to be mapped into a channel to cc in 
bounded by parallel straight lines. See Fig. 1. For the Green’s function integral, 
regions can be restricted by arcs closing the channel openings, and then the arcs are 
allowed to recede to co. The total turning angles around the channel on the 
are A(m) + 7t in R, and rc in R,.. Then, for the relevant part of the integral, we 

+ lim [T(w, w~)-~(wO, wb)] A(m). 
w,-cc 

The bracket has a finite limit, namely (n/2/2)( w,, - w). This is taken into account in 
Section IV.B.3, where the Green’s function and the SCE for the horizontal chained 
in the w-plane, as illustrated in Fig. 1, are set forth. 
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w - PLANE z -PLANE 

I”-- 
i-4 f 

Bw 1 

x . . . 

FIG. 1. Boundaries and turning angles for the conformal map of an irregular channel to a horizontal 
straight channel. The Green’s function integrals over BL* m, give a finite contribution as these boundary 
segments recede to + co. The turning angles at infinity in the w-plane are @lj)( + 00) = 0, 0’,)( + co) = n. 
See Section IV, Case 3. 

B. Flexibility in the Choice of Green’s Functions 

An appropriate choice of Green’s function can improve convergence of the 
integrals given in (2.13) at co. The G(w, w’) of the last section are not unique 
because the constants pi of (2.4) need not be specified. To any specification of 
G(w, w’) can be added a harmonic, symmetric function of w, w’ which obeys con- 
stant normal derivative boundary conditions, without changing the SCE formulas. 
For example, for a periodic map from the upper half w-plane (case 6 in the next 
section), both 

and 

G = log 1 sin i( w - w’) 1 + log 1 sin i(w - w’*) 1 

G = log I elw - e’“’ 1 + log 1 1 - e’(“-““*) 1 

are acceptable alternatives, but the second gives a more useful and more easily 
perceived behavior at co. 

Also, the complex extension from G(w, wB) to T(w, wB) introduces choices. 
Taking the second G above in the limit w’ + U’ = real, we can write, for example, 

G(w, u’) = 2 log I 1 - e’(“- U’) I or G( w, u’) = 2 log I eiU’ - erw I. 

Then “dropping the absolute value sign” leads to the alternatives 

T(w, u’) = 2 log( 1 - ei(W-U’)) or r( w, 24’) = 2 log(e’“’ - eiW). 

The first is analytically preferable because it vanishes like O(e-“) as u + 00, and the 
log is made single-valued by the simple rule, 

- f n < arg( 1 - eicwMU’)) < 4 n, for Im( w) > 0. (3.1) 
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For the next section, in cases 4 and 6, we also need the limit of the first T(w, zd’) as 
w -+ u + k. 

lim 2 log( 1 - ezCu + jemu’)) 
E-0 

= 2 log sin 1(~ - u’) + i(u - u’ - n) + 2 log 2, 63.2) 

where 

sin t( 24 - u’) z Iii0 sin t(z4 - 24’ + is) 

= 
i 

1 sin ;(u - u’) 1 for -7C<U’<M671, 
1 sin +(24 - tr’) 1 em for -7T<u<u’<n. (3.3) 

These relations are also relevant to IV.4. 

C. Symmetry of SCE between R; and R, 

Under a conformal map, the differential equations (2.3), (2.8), and the boundary 
condition (2.9) are invariant (though (2.4) is not). Thus a two-source Green’s 
function g(z, z’, zo) for R, is obtained by substituting the inverse of z =z(w) in 
g(w, w’, wo). If we put 

log(dz/dw) = - log(dw/dz), 

do2 - de,,. = - (de, -de,) 

into the SCE for the map from R, to RZ, and take account of the invariance of the 
two-source Green’s function, we get the SCE for the map of RZ to R,. In other 
words, the SCE is symmetric in form under interchange of the z and w planes. 

D. On the Subtracted and Unsubtracted Alternatives for the SCE 

The subtraced SCE, Eq. (2.11), is more general than the simpler, ~ns~btra~t~d 
from Eq. (2.14) and is appropriate point of departure whenever there is some 
tedious analysis to be done on behaviors at infinity. But in many instances 
Eq. (2.11) reduces to Eq. (2.14). 

We do not have rigorous necessary-and-sufficient conditions to characterize maps 
which require the subtracted SCE, but will offer some suggestive criteria and exam- 
ples for mappings of half-infinite regions. In particular, the subtracted SCE is 
applicable in Cases 1 and 2 cited below in this subsection but fails in Case 3. 

Let R, be a half-infinite region bounded by a single curve and let R, be the upper 
half plane. Write s for s, and u for s, with s + f co as w + &- co; O,[s] has limiting 
values 8, and B _ o. for s --+ & co. B, will have a total turning angle 
A = (6, - B _ ,) and a total turn parameter M = -A/n subject to 

581/12/2-6 
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The Green’s function with w’ = U’ on the boundary is 2 log 1 w - U’ 1, and de, = 0, as 
noted in Section IV.l. 

There seem to be three general cases for such mappings, if the boundary in the 
z-plane is reasonably smooth at large distances from the origin, as characterized 
below. In our rather general examples, the unsubtracted SCE holds if (1) the total 
turning angle of Bz is less than rc or (2) the total turning angle equals 7~ and the 
boundary curve approaches well-defined asymptotes at &- co. But the unsubstracted 
SCE fails if (3) the turning angle is it and at least one arm of B, fails to have an 
asymptote. 

We consider only boundaries B, such that the direction 0,[s] approaches its 
asymptotic values smoothly according to some power law, specifically, 

l9,[s] -8, -KU as s-co, (3.4a) 

e,[s]-e-, +-Q’ as s+ -co, (3.4b) 

where the powers a, a’ are positive. 
The condition that B, has an asymptote at s + co is that 

lim 
s 

’ (e,[s]-e,)ds<co. (3.5) S'4) 

Thus, a boundary following the law (3.4a) approaches an asymptote if a > 1 and 
fails to have an asymptote if 0 <ad 1. As examples, we note that for s --, co, 
(fJ,[s] - 0,) behaves like se2 for a hyperbola, and like s-ii2 for a parabola. 

We now ask whether the integrals of (2.13) do converge separately under present 
circumstances. It is sufficient to consider the real parts of these integrals and to take 
w = u = real. We shall analyze a more restrictive question, namely, whether, as 
u--t &co, 

s 
co 
*‘=--co 

log lu-U’l de,(u’)Nlog IUl jde,(u’) 

-log 1241 (e, -e-,1. (3.6) 

If so, the unsubtracted SCE holds, and for 1~1 + co, 

log2 -c-(e, -e_,)(i0glul)/71~c++a0g 1~1, (3.7a) 

so that 

We distinguish three cases: 

ds 
--N&lu(". 
du 

(3.7b) 
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Case 1. Suppose d < x so that CI > -1. Suppose a > 0, a’ > 0. For large j s 1) 
Eq. (3.7b) implies IsI N Iu~‘+‘. Then, by (3.4) 

de,(q N u -l-a(l+a) du , 2.43 +m, (3.8a) 

NU 
-1-a’(l+a) du 

> id-+ -cxl. (3.81s) 

The exponents of u in (3.8) are less than -1. Then one may verify that the large j tli 
behavior of (3.6) is valid. Appendix A indicates how the algebra of this verification 
might go. Under the conditions of this case, Eqs. (3.6) and (3.7) are mutually 
consistent and the unsubtracted SCE holds. 

As an example, let R, be the exterior of the parabola 

y2 =4$(x + p2). (3.9) 

The conformal map is z = (W + ip)‘. One finds, following the left-hand rule; d = -rr, 
LX= -t-l, and for large Is/, Is/Nu~, (e,[s]-e+,)hplSI-1’2, dt?,/du-pub2. The 
unsubtracted SCE may be explicitly verified by elementary integration techniques 

Case 2. Suppose a = -1 and Eqs. (3.4) hold, but with a > 1, a’ > 1. For large 
Is/, we get from (3.7), 1.~1 -log IuI so that 

de,(u)~(iOg~u~)-l-~~-ldu, !A--, +co, (3.1&i) 

NlogIUI)~l-rr’IUI~1dU, u-+-m. (3.10b) 

Again Eqs. (3.6) and (3.7) are mutually consistent, and the unsubtracted S@E 
holds. The verification of (3.6) is not trivial; details are given in Appendix A. 

As an example, let R, be the interior of the right-hand loop of y2 = I- x -?. T 
01= -1, s-log 12.41, Ie,(s)-e,, j - lslp3, dez(uydu-(log I al)-” /2.4-l, and the 
unsubtracted SCE holds for this case. 

Case 3. Suppose c( = -1, but unlike Case 2, either a d 1, or a’ < 1, or both. The 
rate at which ez(s) -+ 8, ass-,co,oratwhichB,(s)-,e_,ass-,-oo,isnobet- 
ter than 0(/s / -I). Then de=(u)/& vanishes no faster than O((log / u / )-* / w / -‘) and 
the integral of (3.6) does not exist. The unsubtracted SCE fails. 

For example, let RZ be the interior of the parabola (3.3). The conformal map is 

w = i cosh(rr ~512~). 

Then for large ) s /, 1 s I N log* I u I and I de,/du I N (log / u I ) -’ 1 u ) -I. The integral of 
the subtracted SCE converges, but the integral of the unsubtracted SCE does not. 

IV. A SHORT CATALOG OF GREEN'S FUNCTIONS AND 
SCHWARZ-CHRISTOFFEL EQUATIONS 

A. Discussion 

A Schwarz-Christoffel equation for a conformal mapping z = z(w) between 
and RZ has the general form 

log(dz/dw) = C + 1 Qi? (4”“s ) 
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where C is a complex constant and the sum is over Greens-function integrals on 
one or more segments BE) of the boundary B, of R,. 

When z and w are on their respective boundaries, the left side of (4.1) has real 
and imaginary parts as given by (2.2). At the start of a mapping calculation, the 
bounaries B, and B, are specified and the directions O,[s,] and 0,(s,) of the 
tangents to these boundaries, respectively, are presumed known in terms of their 
respective arc-length variables. The real part of (4.1), with z and w restricted to 
their boundaries is then an integro-differential equation for the boundary map 
function s, = s,(s,) and the related angle function ~Js,), 0,(s,) = B,[s~(s,)]. 
Depending on the geometry, the real or the imaginary parts of C, or both, may be 
fixed by initial data or by initial assumptions; otherwise, they must be solved for 
concurrently with s=(s,) and /3,(s,). Once e,(s,) is determined, Eq. (4.1) in its 
general form defines dz/dw throughout 4p, and a subsequent integration yields 
z = z(w). References [3-61 illustrate how this can be managed in particular cases. 

Again depending on the geometry, Eq. (4.1) may not determine z(w) uniquely, 
but may allow some map parameters to be preassigned, as is well known. The 
Riemann mapping theorem shows that in a mapping from one simply connected 
region to another, three real parameters may be preassigned. For example, these 
parameters could be the t 3 7 6 . 8 0 1 1 2 j  0   T r  4 4 . 2 6 6 8  0   T 1 5   T c 0 i 3 t e r s  t 3 7 6 . 8 0 1 1 2 j   e 6 8  0   T 1 5   T c 0 i 3 t e r s 1 s 1 0 p 9 . 0 9 i 3 1 3 a . 4 a . 0 1 7 0 . 1 7 0 3 a . 4 a . 0 1 1 5 . 7 3 3 r 7 2   T r  3 5 2 5 4 0 5 r  - 0 . 0   T m a g e  2 8  0   T D  3   T w  ( t o  )  T 0  3    a n 0 3 5 4 0 2 9 8   T r  - 0 . 1 0 2 1 8 6 4   T c f  3 5 . 7 3 3 4  0   T D  3   T r  - 0 . 1 7 3 8   T c  0 . 1 T r  - 0 . 1 5 2 5   T c  0 . 1 0 0 4   T w  ( p r e a s s i g n e d .  )  T j  0   T r  6 2 . 9 3 3 5  0 2 2 T 1 5   T c 0 i 1 t e r s  connected 
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2. Lower half plane. 

R,: -c~<u<co, -oo<v<O 
B,: ws = u, s, = -u, e,(s,) = 0. 

Write 0,(u) for the B, direction (rather than 0,( --IV)). 

G(w, w’)=log Iw-w’( +log Iw-w’*/ 

log(dz/dw) = c- [iI+ o. log(w - u’) de,(u)/% 

Im(C)=8,(-co), --71<arg(w-u’)BO. 

3. Horizontal straight channel (see Fig. 1). 

R . --oO<u<cO,O<v<h IV- 
B,: wB = u, s, = u, 8,(s,) = 0 on Bv) 

wB = u + ih, s, = -u, 8,(s,) = 7~ on B(, 
w,=u+iv,s,=vwithu-+co,Odv<ihonB~~’ 
wg=z4+iv,sW= -vwithu+ -m,O<v<ihonB~,-m”‘. 

The direction of Bi’), BLz) are taken as 8i1)(u), @y)(u), respectively. 

G(w, w’) = log 1 sinh(x/2h)(w - w’) 1 + log 1 sinh(x/2h)(w - w’*) j 

log(dz/dw)=C+Q, +Q2+Q, +Qpno: 

Q, +Qem =w[8~yco)-e~“(Kl)+e~~~(-oo)-el’~(-GO)-2271]/(2h) 

=wC4~)--d(-oo(lWh 
where A( cc) and A( -00) are the aperture angles at the ends of the R, channel, as 
shown in Fig. 1: 

sinh G (w - u’) 
I 

&p)( u’)/z, 

0 d arg sinh G (w - u’) 
1 

6 rc, 

log [ sinh k (w - u’ - ih) 
1 

~~~*)(u’)/Tc, 

-7~ d arg 
i 

sinh g (w - u’ - ih) I < n. 

4. Interior of unit disc. 

R,: w=pe’#, O<p<l, -7r<q5Q7c 
B,: ws =e+, s, =q5, ~~,(s,)=c#+&TL 
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We suppose R, is also an interior region. The direction of B, is counterclockwise. 
The direction angle is written as e,(4) and satisfies the condition e,(rc) = 
eZ( -7c) + 27c: 

G(w,w’)=log)l-w/w’j+log)l-ww’*j+logIw’I 

log(&/dw) = c - s” log( 1 - we-@‘) &,(@‘)/7r, 
(‘= --?I 

-$rc<arg(l-weVid’)<izn. 

(Note that j log( 1 - we”‘) de,,,(#) = jFz log( 1 - we@‘) d#’ = 0.) For w on the 
boundary, w = e”, an alternative is the following: Apply Eqs. (3.2) and (3.3) with 
4, 4’ in place of U, u’. Then 

log dz/dq4 = c’ - j” log sin $ (4 - 4’) d0,( qT)/q 
(‘= -n 

arg(sin 4(4 - 4’)) = 0 if fj > #, 

=‘lt if fj < f$‘, 

Im( C) = eZ(7c). 

The constants are related by 

C=Re(C’)+210g2+ijn [0,(#‘)-in] df/(2n) 
-7L 

= Re( C’) + 2 log 2 + arg dz(O)/dqk 

A corner of B, at 4 = +n can be handled by shifting the integration to 
--rc+s<&<n+~ and taking s+O. 

The real part of the log dz/d@ equation was derived earlier by Noble [9] by a 
method which, like the present one, does not use a limiting approximation by 
polygons. 

5. Exterior of unit disc. 

R,: w=pe’“, 1 <p<cn, -TC<~<TT 

B,: wg = e”, s, = -4, 0,&s,) = ~5 - $7~. 

We suppose R, is also an exterior region. The direction of B, is clockwise. The 
direction angle is written as e,(4), and satisfies the condition e,(n) = 8,( -n) f 27~: 

log(dz/dw) = c-l-z log( 1 - e”lw) &,(&)/n, 
4’ = x 

- 4 72 < arg( 1 - e’“‘/w) ,< 3 71. 
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As an alternative for w on the boundary, w = e”: 

log(dz/&) = c’ -[-Z log sin 4 (4 - 4’) dO,(#‘)/~, 
)’ = II 

arg(sin i (f$ - 4’)) = 0 if 4 > I$‘, 

= -n if q5<4’, 

Im( C’) = 0=( 7~). 

The constants are related by 

C=Re(C’)-210g2+i{E [e,(q5’)-in] dg)‘. 
--x 

6. Periodic geometry in the upper half plane. Let z = z(w) map the upper half 
w-plane to the half-infinite region 8, above a boundary BZ which is periodic in x 
with ( -L, L) as the fundamental period. We can normalize as follows: 

R,: -rc d u < Z, 0 < v < cg. The points --71 + iv and n + iv are identified as the 
same point. 

B,: ws = u, s,. = u, 19,(s,) = 0 

RZ, BZ: Let B, be the image of B, with z, normalized so that the abscissa f~or 
BZ is on ( -L, L). R, is then the image of R,. 

The map is of the form z(w) = (L/n) w + S(w), where F(w) is periodic and 
analytic in the upper half plane; it has a Fourier expansion 

F=F(co)+ f a, ernn’. 
n=l 

Then 

log(dz/dw) - log(L/n) + O(e-“) for v--too 

G(w, w’) = log 1 1 - e’(“- w” / + log / 1 - e’(‘+ - w’*) 1 - v’ 

log(dz/dw) = C - J= log( 1 - eZcW ~ “‘I) dC!l=(u’)/n, 
u’= -* 

--~71arg(l-e’(“~““)~f71, 

C = lim log(dz/dw) = log(L/x). 
U-+02 

By convention on the corners at u = f 7t: Take the integration interval as 
( -7~ + E, E + E) with E + 0. Then a corner is associated with a jump AC?=(u) at u = n, 
but not at u = -7~. More explicitly, when there is a corner at + 7t and flu) is 
smooth, 

5 1, f(u’) dez(u’) .i 
I--E 

means -n+Bfw) &(u’) +f(~) Ae,w 
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The following sum rules apply: JlrR &,(u’) = 0 and jTx 19,(u’) du’ = 0. The latter 
fohows from js, S,(w) dw = 0. As an alternative for the boundary, w = U: 

log(dz/du) = C - f= log sin 4 (U - u’) d0,(u’)/x, 
u’= -n 

arg sin + (24 - u’) = 0 if 2.4 > u’, 

=7C if 24 <u’, 

c = log(L/n) + 8,(X + E), & -+ 0. 

7. Even periodic geometry in the upper half plane. This follows case 6 above, 
with Bz symmetric under x + -x. Then under u + -U, z(w) - (L/n)w is even, and 
O=(u) is odd. We can set, for any f(u), 

j;, f(d) de,(u’) =/0X cf(u’) -t-j-( -u’)l de,(d); 

R,: O<u,<n, O<v<co, 

Wdzldw) = logW/~.) - ju;= o log( 1 - 2e’” cos U’ + e21w) de,(u’)/q 

-3 < arg( 1 - 2eiw cos 2.4’ + e2iw) < n. 

For the alternative for the boundary, w = U: 
A form which explicitly takes into account the corners at u = 0 and u = rc, if there 

are any, is 

log(dz/du) = C- In-’ log( cos U - cos 2.4’) de,( u’ )/Tc, 
8 

arg(cos U’ - cos 2.4) = 0 or rc, 

C = log(2L/z) + i0,(7c + E) 

- log(sin $4) M,(O)/n - log(cos 4 U) de,(qn. 

8. Odd periodic geometry in the upper halfplane. This follows case 6 above, with 
B, antisymmetric under x -+ -x. Then under u -+ -U, z(w) - (L/x) w is odd and 
@,(u) is even. We can set, for any f(u), 

13, Au’) dQ,(u’) = j; Cf(U’) -f( -u’)l dez(u’). 



SCHWARZ-CHRISTOFFEL MAPPINGS 363 

There can be no corners at U’ = 0 or frc. 

R,: O<u<n, O<v<co, 
1(w - u’) 

log(dz/dw) = log(-W) - 1; log ; 1 Zi($$ + U’) d~,(U’)/~, 

1-e i(W-U’) 
--n<arg 1 -e’(w+u’) ==z7L 

As an alternative for the boundary, w = U: 

WWd~) = c - 1; log sin L (u + u,) sin i (u - 4 d@r(UI )/& 
2 

arg 
sin 4 (24 - 24’) 
sin4(U+U’) 

=Oor?t, 

c = log(L/rc) + i0,(n). 

9. Periodic channel. 

R,C: -II<U<X, O<v<h 

B$): wg = u, s, =u, fy(s,)=O 

BF): wg = u + ih with h > 0, S, = rc - U, eF)(s,) = --71. 

Consider a channel in the z plane bounded below by the curve y = p(l)(x) an 
bounded above by y = p”‘(x). Let both boundary curves be periodic in x witla fun- 
damental period (L, -L). Let RZ be a “fundamental period” of this channel such 
that its lower boundary B, (l) is the image, under the ma.p z = z(w), of Bc), and B$‘) 
extends over -L <X < L. The upper boundary Bi2), which is the image of Bly219 
extends over an interval of equal length, -L -t x0 d x < L + x,,, with x0 to be deter- 
mined concurrently with the map. The directions of B$‘l, 8t2) are @i)(u), 6~z~(~), 
respectively. 

Both z(w) - (L/IT) w and log(dz/dw) are analytic and periodic functions of 
the w-channel, with period 271. If the circuit integral of z(w) - (L/n) w around 
equated to zero, the imaginary part of this relation yields 

h = 1’ [jC2’(u) - p”‘(u)] du,‘(2n), 
-?I 

so the height of the w-channel must also be determined concurrently with the map. 
Alternatively, h can be fixed in advance, and the scale size L of the z-plane 
periodicity taken as the unknown. The same treatment of log(dz/dw) yields 

which can serve as a diagnostic check on computed values of oil)(u) and sp)(u). 



364 FLORYAN AND ZEMACH 

In the formulas below, a0 and 9r are Jacobi Theta functions with parameter 
z = ih/n and some q = eirrz = e -‘. See Appendix B for a listing of the properties of 
these functions and verification of the formulas for the present case: 

G(w, w’) = log 9 j 1(~)i+log/9,(~)~> 

log(dz/dw) = c-c;, log 9, (T) d8$‘+L’)/n 

- j.j,10g91(w-u;-ih)de~2’(u.)/~. 
Boundary equations: For z on B$l), 

=7C if u < u’, 

u-u’ 
arg 9, 2 ( ) 

= 0, Im Co) = W)(rc) z . 

For z on P) z 2 

x log dz/dw = Cc’) - 
s 

dOj’)(u’)/n 
u’= --n 

- s --1[ log9, q 
( 1 

dey( u’)/n, 
u’ = R 

u- 2.4’ 
arg9, - 

( ) 2 
=o if u > u’, 

= -n if 24 <u’, 

u-u’ 
arg SO - ( > 2 

= 0, Im Cc2) = O(‘)(n) - 71. * 

The relations among the constant are (from Appendix B): 

C = C(l) + i [ OL2)(n) - jn 
--I( 

et_“)(u) duj(2n)] 

e:yn) - jn epqu) dq(27t) . 
--K I 

Corners at the ends of B!‘), Bi2) may be handled as in case 6, above. 
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Floryan [6] has calculated maps of general periodic channels to a standard 
channel by repeating the periodic pattern y1 times in R, and applying the procedure 
for a nonperiodic channel and then letting n increase until sufficient convergence is 
obtained. This may be shown to be equivalent to approximating the 9 functions by 
the first y1 terms of their representations as infinite products. We expect to develop 
the analysis and calculational methods for the periodic channel using the present 
formulation in a subsequent study. 

10. Annular region. The transformations W= e”“- w), w = i log W+ n define a 
conformal map between the fundamental period R, of the periodic channel in 
case 9 above and the annulus 1 < 1 WI < b in a complex W plane, with b = eh. (In 
this map, corresponding points -R + iv and TL + iv in the w plane are identified as 
the same interior point of R,; i.e., R, is a projective rectangle.) 

The conformal mapping between the W-annulus and a doubly connected region 
of a complex Z-plane can be addressed directly, but it seems simpler, ~on~e~t~a~l~ 
and notationally, to set Z= ercnez) and treat the mapping between z and M’ 
according to case 9. The doubly periodic nature of Green’s function has a clearer 
geometric expression and the theta functions have arguments of the form 4 (bv - ~1’) 
rather than 1 i log( W/W’). 

APPENDIX A 

We wish to verify that the integral of Eq. (3.6) of this text, 

F=Jm log / U - U’ 1 &,(U’) 
u’= --co 

behaves, in the limits u + k co, like 

F, = log 1 u 1 s &,(u’). 

under appropriate conditions on d6,jdu for large u. First set F= F, + K, so t 

K=,T” log 1 1 - u’/u j d0Ju’). 
u’= -a 

We must show K-, 0 as 1 u 1 -+ 00 under the conditions (3.8) for Case 1 of 
Section IILD and under the conditions (3.10) for Case 2. We treat only Case 2 
explicitly here. The convergence of K to zero is stronger for Case 1 and can 
handled along the same lines. 

To begin, divide the integration interval into 3 parts 
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where 1 u0 1 is so large that the asymptotic expressions in (3.10) for d8,/du can be 
used in the first and third parts. We look in detail only at the third part; the 
argument for the first part will be essentially the same, and the contribution to K 
from the interval ( -ZQ,, uO) clearly goes to zero with 1~1 -+ co, as u0 is fixed. The 
third part of the K integral, for large enough u,, and the conditions of Case 2, can be 
written, apart from a constant factor which we ignore, 

s 
co log 11 - z//u I 

du’ 

UO u’(log z#+ =. 

Divide the integration interval (zQ,, co) into four parts 

i*; =ju:+G”+il;;u+s 

and let their respective contributions to K be called K, , K2, K3, K4. 
First, 

6 I ha 1 - l/x/Q I c (1% %)--a - (1% J4 -“l/u, 

so 1 K, 1 behaves like ZJ -I’* as u 4 co. 
Second, in the K2 integral, I log(1 - u’/u) I d ( log(i) 1, so I K2 I - (log &)Pu - 

aasu+co. 

1 K3 1 < 1 log 4 u 1 --n fi:: log 1 1 - u’/u ) du’/u’ 
u 

< Ilog$uI-” 
s 2 

logil-xldx/x, 
112 

and the x-integral is finite. 
Fourth, starting from 2u < U’ and 1 < u, we have u < u’ - u < u’ < u’u, so in the K4 

integral, 

0 < log(u’ - u) - log 24 < log(u’u) - log 24 = log u’. 

Hence, 

I K4 1 < 6 u!(l~;t)a = (log 224’~“/(a - 1). 

Therefore K = K, + K2 + K, + K4 + 0 as u + cc because a > 1 for Case 2. 
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APPENDIX B 

This appendix provides technical details that aid in verification and utilization of 
the equations for the periodic channel, Case 9 of Section IV. Variables w = u + k’v 
and w’ = U’ + iv’ are assumed to be in R, for that case, or on its boundary, i.e., 
--n <u, U’ 9 TC, 0 <u, v’< h. The nome q and second period EZ of the relevant 
Jacobi Theta functions, primarily A+,(z) and al(z), are related to the height of R, 

1. Useful Properties of Theta Functions 

Series and products. 

lJJo(z) = 1 + 2 f ( -1)” qH2 cos(2nz) 
fl=l 

$1(z)=2 f ( -l)nq(n+1’2)2sin(2n+ 1)z 
n=O 

$o(z)=P(q) fi (1-2q2”f’cos2z+q4”-2) 
n=l 

gl(z) = 2P(q) q”4 sin z fi (1 - 2q2” cos 2z + q4”) 
?l=l 

log I!JO(z) = log P(q) - 2 Ez, 6 cos(n2nz) 

log gl(z) = log sin 2 + log(2P(q)q’l”) - 2 f q2” 
cos(2nz) 

n=,c-p n ’ 

where 

P(q) = fi (1 - q2n), P3(q)= f (-1)“(2n+ l)qn2+n. 
n=l n=O 

Zeros (n, m are integers). 

90(z) = 0 at z=~n~+mc+m7rr 

2&(z) = 0 at z=nn+mw 

Shifts. 

lJl(z&+7C2)= *iq-‘~4e~Z”$o(z) 

$o(z + n) = 90(z), 8,(z + n) = -q(z) 

Si(z) = - qe21z gi(z + x2), i=o, 1. 
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Reciprocity (set z’ = -l/z = in/h, log q’ = x2/lag q). 

9,(z, z) = ( -i~‘)1’2(q’)z2’n2 Q2(d, 7’) (B.14) 

$,(z, z) = -i( -i~‘)1/2(qr)z2~~2 Q1(zf, z’) (B.15) 

P3(q) = (q’/q)““( -i$)3’2 P3(q’) (B.16) 

with 

9,(z, z) = 2 f q@+l’2)* cos(2n + 1)z. 
n=O 

(B.17) 

The above equations are all (or nearly all) that one needs to know about theta 
functions for theory and computation of SCEs for periodic channels. For h 2 rc and 
hence q 6 ePK < 0.0433, and for z = f (w - w’), the first four terms of the sums in 
(B.2) and (B.3) p rovide machine accuracy (14 figures), or better, for needed values 
of the theta functions. For h < rc, one applies (B.14), (B-15) and four terms of the 
series for s2(zrr, r’) and Q,(zz’, 7’) are sufficient for 14 figures. 

2. Green’s Function 

We now verify that 

G(w, w’)=log /9, (?)I +log 19, (?)I (B.18) 

may be taken as Green’s function for R,, with constant normal-derivative boun- 
dary conditions. 

A heuristic derivation, not offered here, might proceed by adding a series of 
harmonics periodic in w to log 1 sin $ (w - w’) 1 to meet boundary requirements; one 
would arrive at (B.18) via formula (B.7). To confirm (B.18) directly, we observe: 

(a) G(w, w’), as given by (B.18) is periodic in w with period 271, symmetric in 
w and w’, and analytic in R, except where the theta functions vanish. 

(b) For w, w’ in R,, (B.lO) implies that $r((w- w’)/2) vanishes only at 
w= w’; $r((w- w’*)/2) does not vanish. By (B.7), the singularity of G(w, w’) at 
w = w’ is like log 1 sin + (w - w’) 1 and hence like log 1 w - w’ I; so G satisfies 

V; G(w, w’) = 2% 6(u - u’) 6(v - v’). 

(c) Set log 19, ((w - w’)/2)) =f(u), for short. Then 

Also, by (B.13), with z = 3 (w* - w’) and rrr = ih, 

log 19, (F)I =f(2h-u)+u-d-h. 
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Then, on boundary BE) of R,, 

aG -= 
an { -; Cf~v,+fb91} =o, 

V==O 

and on boundary BF) of R,, 

aG 
an= i 

; If(v)+f(2h-~~+v-~.-h1) =I. 
V=h 

This completes the verification of (B.18). 

3. Boundary Relations 

Applying Green’s theorem as described in Section II, one obtains the SCE for the 
map z = z(w) without subtraction in the form 

log(dz/dw) = C+ Q,(w) + Q,(w), 

Let w approach boundary Bt), i.e., w = u + ic, E -+ 0. Then 

QI(w, -+ Q,(u) = -s” u’= -n 

where, noting (B.5) or (B.7) above, 

u-u’ 
Imlog9, 2 

( > 
= Im liliO log sin 4 (U + i.2 - 2.4’) 

= Im pm0 log(u - 24’ + i&E) 

=o if u>u’, 

=7t if ucz.4’. 

To separate the real and imaginary parts of QZ(w) = Q,(u) for w on Bc), Apple 
(B.ll) in the form 
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to get 

Q*(w) + Q*(u) = - j-, log 90 (V) dy(u’)/7c 

- s -II [$i(u-u'-n)+$h] del_2)(u')/n u' = z 
=- s -n log9, q ( ) del"(u'y7t 11' = 7c 

-ie;‘$c)+ iI” ep’(u’)du’/(27c). 
--II 

For the last equation, the periodicity of eL2) and an integration by parts were 
utilized. The log a0 term is real for -n < U, U’ < rc because 9, is positive, as can be 
inferred from (B.4). 

The limiting forms of Q,(w) and Q,(w) as w goes to BF), i.e., w = u + ih - is, 
E --f 0, are processed in the same manner. We find 

Q2(w) -+ Q2(u + ih) = -j;+, log 9, (G) ~@;~)(u’)/n, 

where 

Imlog9, q 
( ) 

= Im limo (U - U’ - is) 

=o if u>u’, 

= -j-c if u<u’. 

And, applying (B.ll) in the form 

9, (u+y)=e (WP-u++‘+n) e(1/4)h 9, 

( ) 

u-u’ 

2 ’ 

we get 

Ql(w) + Q,(u + ih) = -c= --n log 9, (q) @‘)(u’)/n 

These all relations are summarized in Section IV.9. 
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